
Tiny Sample Synthesizer Adrian Boeing

The Tiny Sample Generator

Adrian Boeing, 2004

Introduction.

What?
Tiny Sample Generator is a minimalistic implementation of a synthesizer, which most
closely resembles a modular analogue synthesizer. The synthesizer consists of various
‘components’ which can be joined via ‘connections’ . These concepts loosly represent
different electronic ‘modules’ (such as amplifiers), and simple wires respectively.

Why?

Tiny Sample Generator is a small software synthesizer designed to use the least
reasonable space in terms of code size, whilst still providing enough functionality to
allow complex samples to be generated. The sample generator is intended to be used
in conjunction with a tracker, which is why certain features are not present.

Tiny sample generator currently compiles into 6kb, and can be reduced to 3.5kb via
compression. The sample format used by the synthesizer is itself very small, and
designed to achieve a high level of compression.

Theory - Components.

The synthesizer consists of five different components:

• Parameters: These represent constant parameters, or variables used as
controlling inputs into other components. In terms of analogue synthesis, this
can be considered as a constant voltage being applied to a component.

• Oscillators: Oscillators produce an output signal that repeats at a specified
frequency. Oscillators produce the fundamental signals that drive all the
sounds within the synthesizer.

• Offset Multipliers: The offset-multiply component allows any signal to be
multiplied and given an offset. This is equivalent to a voltage amplifier that
also allows a DC offset to be applied to a signal.

• Envelopes: Envelopes modify the amplitude of a signal according to the length
of time the signal has been active. They are somewhat similar to ‘ instruments’
in a tracker

• Filters: A filter performs various ‘modifying’ operations on a signal that
passes through it.

Oscillators:

There are five different selectable signal generators for the synthesizer. These
determine the shape of the signal used to create a sound.

Tiny Sample Synthesizer Adrian Boeing

0 100 200 300 400 500 600 700
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Signal Generator Functions

The ‘sine’ generator is a mathematical sine function, which is illustrated by the blue
curve in Figure 1. Pure sine waves tend to have a very ‘soft’ sound.
The ‘square’ generator is illustrated in red. This tends to have a ‘hard’ sound.
The ‘sawtooth’ generator creates a “ linear” wave, show in black. The sounds
produced by the sawtooth tend to be ‘sharp’
The ‘ triangle’ generators creates a “ linear” wave similar to the sawtooth, except that
the signal is more continues. The ‘ triangle’ wave is illustrated in green. It produces a
harder sound than a ‘sine’ wave, but still softer than others.
An additional generator, “noise” is included, but not illustrated. This generates
pseudo-random values for the signal representation. This sounds like “static” or,
otherwise know as “white noise” .

Envelopes:

The synthesizer supports only one type of envelope, the ADSR envelope. The
envelope contains 4 different sections: attack, decay, sustain, and release.

The attack determines how long the sound takes to get to full amplitude. Decay
indicates how long the sound takes to get to the ‘sustain’ amplitude. The sustain
determines the length of time the sound stays at the ‘sustain’ amplitude, and the decay
determines how long the sound takes to get to zero amplitude (fade out).
The amplitude ‘envelope’ is illustrated in Figure 2.

Tiny Sample Synthesizer Adrian Boeing

 Start Attack Decay Sustain Release

Figure 2. Amplitude Envelope

The ‘x’ axis represents time, and the ‘y’ axis represents the amplitude. The first red
line indicates the starting time of the sample, the second line indicates the ‘attack’
time value, followed by the ‘decay’ , ‘sustain’ and ‘ release’ times respectively.

Offset Multiply:

The offset multiply component is easiest described mathematically:

output = input * multiply_constant + offset_constant
Equation 1. Offset Multiply

Filters:
There are a number of different filters that are part of the synthesizer:

• Low Pass : This filter is a second order resonant low pass butter worth filter.
Given a specified frequency value (the cut-off value) only signals with a
frequency that are roughly below the cut-off will pass through the filter. Thus,
only ‘ low’ pitch sounds will pass to the output. This is somewhat like using a
graphic equalizer on a stereo to cut out all the high frequency sounds.

• High Pass: Similar to the low-pass filter, except it performs exactly the
opposite operation. The high pass filter will remove all sounds in a signal
lower than the specified cut-off frequency value.

• Wave Shaper: A wave shaper re-shapes the input sound wave to a different
form. Wave shapers can be used to sharpen, or soften sounds. The wave
shaper simply transforms one input value to another, different output value.
Figure 3 illustrates the wave shaper with differing input values. The black line
indicates a one-to-one mapping from input to output.

y

x

Tiny Sample Synthesizer Adrian Boeing

0 5 10 15 20 25
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3. Waveshaper 1

In the above figure, the blue line represents Waveshaper1 with an
input value of 0.5, The red line with an input value of –0.5, and the
green line represents an overdrive value 1.2 (ie >1)

• Smooth: The smoothening effect smoothens out a signal to reduce the effect of

small clicking artifacts that may occur during the synthesis process. The
smoothing effect simply takes a moving average of previous output values to
achieve this effect.

• Modulation: Modulation is the effect of ‘multiplying’ two signals together.
(Note: ring modulation filter is simply modulating a sound with a sine wave).
Figure 4 illustrates modulation. The two input signals (The offset sawtooth
wave (blue), and the sine wave (red)) are multiplied together to give the
resulting wave shown in green.

Tiny Sample Synthesizer Adrian Boeing

0 50 100 150 200 250
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. Modulation

• Echo: The echo effect is simply a delay played back at a different volume. The
effect collects a buffer of the previous output, and plays it back at a slightly
later time to give the effect of an echo.

• Chorus: The chorus effect modifies a sound so that it sounds like a number of
individual versions of the sound are being played simultaneously. The sounds
are modified so that the pitch and delay of a sound that is played back is
altered giving the illusion of multiple active samples. This is achieved through
using two delay buffers which are accessed through two oscillators (see Figure
5)

Figure 5. Chrous block diagram

Delay

Delay

Oscillator

Oscillator

input
output

Tiny Sample Synthesizer Adrian Boeing

Using the software synthesizer

Overview
The tiny sample generator (TSG) consists of two major sections: components and
connections. An overview of the components is given in the section “ Theory –
Components” . Components can take both inputs, which determine the way they
operate, and produce outputs, which produces a sound, or in turn becomes an input to
another component. The way components are interconnected are described by two
separate connections: Audio, and Variable (parameters).

Thus the TSG can be seen to operate in two separate phases: a variable phase, where
the settings for each component are configured, and then the audio phase, where the
sounds for each component are created.

Components can only be connected in a many-to-one relationship. That is, a
component can accept the output from many other components, but a single
component can not be the input to multiple other components. (see Figure 6.

Figure 6. Relationship Diagram. (left) one-to-many [bad], (right) many-to-one [good]

Component inputs can also only flow ‘down’ within a group of components. That is,
an oscillator can not be an input to an oscillator that is above it within the list.

Finally, audio data is always in the range of –1.0 to 1.0, whereas variable data can
take any range, but is generally between 0 and 10,000.

Components – Inputs & Outputs

Parameters:

Parameters have only one output and no inputs. The output is whichever value is
entered. They are the simplest building block.

Oscillators:
Oscillators take a variable input and can produce both variable and audio outputs. The
input variable to all oscillators is the frequency in hertz. (ie: number of times to repeat
the basic pattern in Figure 1. each second). Oscillators can also be constant-based, in
which case the time-value for the oscillator is replaced by a constant. For example, a
sine wave oscillator normally operates as: sin(frequency * time), however, under
constant mode it operates as sin(frequency * constant). This is useful when
connecting multiple oscillators together as input devices.

Oscillator

Envelope

Filter

Oscillator

Envelope

Filter

Tiny Sample Synthesizer Adrian Boeing

Name Oscillator
Input Variable (Frequency (hz))
Input Range (typical) Frequency: (Input variable parameter 1)

Varriable: 0 to 20,000
Time Constant:
Variable: 0 to 100

Output Variable & Audio

Offset Multiply:
Offset multiply components can take any form of input and output, as long as the type
is not altered. That is, it can take an input variable, provided it produces an output
variable, and an input audio provided it produces an output audio.

Name Offset Multiply
Input Variable & Audio (Offset, Multiply)
Input Range (typical) Offset:

Variables: 0 to 20,000
Audio: 0
Multiply:
Variables: 0 to 10,000
Audio: 0 to 1 (or larger to perform
distortion)

Output Variable & Audio

Envelopes
Envelope parameters are best described by Figure 2.

Name Envelope
Input Audio
Input Range (typical) Start Time

Audio:0 to length of sample
Amplitude
Audio: 0 to 1
Attack,Decay,Sustain,Release:
Audio: 0 to length of sample
Following the rule:
Attack <= Decay <= Sustain <= Release
Amplitude

Output Audio

Filters
Each filter operates differently. A basic description of each filter is given in the theory
section.

Tiny Sample Synthesizer Adrian Boeing

Name Low Pass
Input Audio & Variable (frequency, resonance)
Input Range (typical) Cut-off Frequency (Input variable

parameter 1)
Audio: 500 to 20,000
Resonance: (Input variable parameter 2)
(hard limit) Audio 0 to √2

Output Audio

Name High Pass
Input Audio & Variable (frequency, resonance)
Input Range (typical) Cut-off Frequency (Input variable

parameter 1)
Audio: 3000 to 20,000
Resonance: (Input variable parameter 2)
(hard limit) Audio 0 to √2

Output Audio

Name Wave Shaper
Input Audio & Variable (distortion)
Input Range (typical) Distortion (Input variable parameter 1)

Audio: -1.0 to 1.0 (higher to perform
serious distortion)

Output Audio
Refer to Figure 3. for wave shaper input parameter effects

Name Smooth
Input Audio & Variable (smoothness)
Input Range (typical) Distortion (Input variable parameter 1)

Audio: 0.0 to 1.0 (lower values means a
smoother sound)

Output Audio
Refer to Figure 7. below for smoothing parameter effects

Tiny Sample Synthesizer Adrian Boeing

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7 – Smoothing

The blue line indicates the original sample data, the green line is a
smoothening of the sample with a value of 0.6, and the red line with
value 0.25. Sharp changes in a line indicates what is perceived as
‘clicking’ noises. (as can be seen, the red (0.25) smoothening has
eliminated almost all the ‘clicking’ noises)

Name Modulation
Input Audio
Input Restrictions Modulation will only operate on two

audio sources. Modulation must always
have two sources.

Output Audio
Refer to Figure 4. for modulation effects.

Name Echo
Input Audio, Variable (delay, amplitude)
Input Restrictions Delay (Input variable parameter 1)

Audio: 0 to length of sample (not
recommended to be more than 1.0)
Amplitude (Input variable parameter 2)
Audio: 0 to 1

Output Audio
Note: Amplitude indicates the amplitude of the ‘echoed’ signal. The original input
amplitude remains unchanged

Tiny Sample Synthesizer Adrian Boeing

Name Chorus
Input Audio, Variable (frequency, frequency)
Input Restrictions Frequency (Input variable parameter 1)

Audio: 1 to 10
Frequency (Input variable parameter 2)
Audio: 1 to 10
A larger value enables the perception of
‘more’ active voices

Output Audio

Components – Allowed Connections Table

 Param Oscil Offset Mul Env Filter
Param x iv iv iv
Oscil x x iv,oa,ov oa oa,iv
Offset Mul x x x ia,oa ia,oa
Env x x x x ia,oa
Filter x x x x
Table 1. Connection types

Legend:
ip – input variable
ia – input audio
op – output variable
oa –output audio

Additional notes:
 It is often difficult to produce the sound you want, so I either recommend you
simply play with things till you make something you like the sound of, or you read up
on analogue synthesis techniques and ‘patches’ so that you know how to create
sounds.

Hints:
Build bandpass by connecting a highpass with lowpass
Make strings/brass by using chorus
Remove ‘choppy’ noises with a smoothening operation
Use highpass on noise to make dodgy hihat
Use lowpass on oscillator & noise to make bass drum with a kick
Use lowpass on noise to make brown noise
Use only the attack and decay portion of an envelope to make a ‘blast’ or ‘kick’

See this webpage for some simple schematics of percussion patches. They are
generally difficult to implement because the parameters are different, and some
features are not present in this synthesizer, but it gives you a general idea of what
components are needed:
http://www.topher.com/analogue_percussion.html

